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Abstract In the past few decades, there has been an evolution in our understanding of soil organic matter
(SOM) dynamics from one of inherent biochemical recalcitrance to one deriving from plant‐microbe‐mineral
interactions. This shift in understanding has been driven, in part, by influential conceptual frameworks which
put forth hypotheses about SOM dynamics. Here, we summarize several focal conceptual frameworks and
derive from them six controls related to SOM formation, (de)stabilization, and loss. These include: (a) physical
inaccessibility; (b) organo‐mineral and ‐metal stabilization; (c) biodegradability of plant inputs; (d) abiotic
environmental factors; (e) biochemical reactivity and diversity; and (f) microbial physiology and morphology.
We then review the empirical evidence for these controls, their model representation, and outstanding
knowledge gaps. We find relatively strong empirical support and model representation of abiotic environmental
factors but disparities between data and models for biochemical reactivity and diversity, organo‐mineral and ‐
metal stabilization, and biodegradability of plant inputs, particularly with respect to SOM destabilization for the
latter two controls. More empirical research on physical inaccessibility and microbial physiology and
morphology is needed to deepen our understanding of these critical SOM controls and improve their model
representation. The SOM controls are highly interactive and also present some inconsistencies which may be
reconciled by considering methodological limitations or temporal and spatial variation. Future conceptual
frameworks must simultaneously refine our understanding of these six SOM controls at various spatial and
temporal scales and within a hierarchical structure, while incorporating emerging insights. This will advance our
ability to accurately predict SOM dynamics.

Plain Language Summary Soil organic matter, the remains of plants, animals, and microbes in the
soil, performs many important functions for humans and ecosystems, providing habitat for animals, nutrients for
plants, climate change buffering, and structure for soil animals and human structures. Thus, it is important to
understand how soil organic matter is formed, stabilized, and lost. Here, we review conceptual frameworks that
have contributed to our understanding of soil organic matter over the past 20 years. We evaluate their support in
experiments and also how well represented they are in computer models. We find the least support and
representation for controls of soil organic matter associated with properties of microbes and physical barriers
between microbes and soil organic matter. These and novel soil organic matter controls require more research
for better understanding of soil organic matter functions.

1. Introduction
Soil organic matter (SOM) is important for both biotic and abiotic processes in ecosystems as the largest store of
terrestrial carbon (C) and nutrients (particularly nitrogen [N]), an energy source for microbes, a habitat for soil
biota, and a foundation for soil structure (Anthony et al., 2023; Cotrufo & Lavallee, 2022). Because of these
characteristics, SOM is increasingly of interest to biogeoscientists, global change researchers, land managers, and
policymakers. SOM is comprised of organic compounds that include plant and other organic inputs at various
stages of decay and products of soil‐dwelling decomposers; it accumulates and persists in the soil when bio-
physical inhibition of decomposition by soil microbes (i.e., heterotrophic soil respiration; Bond‐Lamberty
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et al., 2024) makes SOM decomposition rates lower than input rates. In other words, if organic inputs to soils were
easily available, consumable, and digestible to soil‐dwelling decomposers, and their necromass also easily
available, consumable and digestible to other microbes, there would be little accumulation of SOM. Hence, our
focus here is on this accumulated SOM and its dynamics, including the processes of formation, (de)stabilization,
and loss (Box 1). Our understanding of SOM dynamics has been upended in the past few decades by research
showing that persistence (Box 1) is mediated by plant‐microbe‐mineral interactions rather than inherent chemical
recalcitrance (Schmidt et al., 2011; Lehmann & Kleber, 2015; Kogel‐Knaber and Rumpel, 2018). Interdisci-
plinary, technological advances enabling inquiry of SOM at the molecular level as well as societal needs for better
understanding of SOM (due to its role in agronomy and climate) underlie this evolution in our understanding. This
evolution was facilitated by the publication of several influential conceptual frameworks. These frameworks built
upon empirical insights generated over several decades. We focus specifically on conceptual frameworks because
of the cognitive schema they provide to integrate multidisciplinary advances, promote novel hypotheses, and
stimulate new research (Derry, 1996). Notably, the exact definition of SOM varies between these conceptual
frameworks and the definitions used in empirical research and process‐based models. In empirical studies, SOM
is generally defined as organic matter in soils less than 2 mm in size, whereas conceptual definitions are more so
based on the constituents of SOM (as in Box 1). In process‐based models, SOM is defined explicitly in terms of
the equations that move C or N into and out of pools included in your determination of SOM (e.g., SOM is the sum
of all individual SOM pools, but also potentially the microbial biomass or litter pools). Because of these variable
definitions, there is a need to reconcile conceptual definitions of SOM and its controls with empirical andmodeled
representations.

Here, we synthesize the controls of SOM formation, (de)stabilization, and loss (hereafter, “SOM controls”)
highlighted in several influential SOM conceptual frameworks of the past 20 years. The frameworks that we
chose, based on the authors' opinions and number of citations, sought to identify unifying principles of SOM
dynamics in mineral soils that moved beyond a set of case study approaches (Fierer, Grandy, et al., 2009).
Understanding the controls of SOM dynamics in organic soils is also important but not the focus here (see Belyea
and Clymo (2001), Limpens et al. (2008), and Frolking et al. (2010) for controls of organic soils). We then
evaluate empirical support for the SOM controls and consider the current status of their representation in process‐
based models. We use this review to derive the crucial interactions and inconsistencies among SOM controls and
identify potential areas of future work. The controls identified and evaluated in this paper add nuance to and layer
atop a longer history of theories of soil formation factors (climate, organisms, relief, parent material, and time;
Jenny, 1941) and pedogenesis processes (additions, losses, translocation, and transformation; Simonson, 1959).
As we synthesize progressive SOM science from the last two decades, we note that there have been many useful
and interesting recent SOM reviews that have focused broadly on SOM dynamics (Paul, 2016), the ecology of
SOM (Jackson et al., 2017), mechanisms of soil C gains and losses (Basile‐Doelsch et al., 2020), SOM analysis
and biochemistry (Weng et al., 2022), SOM dynamics informed by SOM fractions (Cotrufo & Lavallee, 2022),
plant and microbial source attribution (Whalen et al., 2022), microbial processes in soil C models (Chandel
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Box 1 Terms and Definitions as Used in This Paper
Soil organic matter (SOM) = organic compounds that include plant and other organic inputs at various stages of
decay and biomass and products of soil‐dwelling decomposers that remain in the soil for some period of time
(days to centuries) due to inhibition of their decomposition by microbes

SOM dynamics = the processes that regulate the existence and cycling of SOM

SOM formation = the transformation of plant and other organic inputs into SOM

SOM (de)stabilization = the interaction of SOMwith a stabilizing force, such as a mineral or metal oxide surface
or aggregate (stabilization), or the disengagement from that interaction (destabilization)

SOM loss = the movement of SOM out of the soil via mineralization, leaching, or erosion (note that leaching can
also move organic materials downward in the soil without being lost from the soil)

SOM persistence = the amount of time SOM remains in the soil
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et al., 2023), and validation of soil C models (Le Noë et al., 2023). We are unique in our focus on SOM conceptual
frameworks, which have not been explicitly and holistically evaluated, despite their important role in shaping our
current understanding of SOM dynamics.

2. Formation of Frameworks
SOM was historically thought to consist primarily of chemically recalcitrant (e.g., bioenergetically unfavorable
conditions for decomposition associated with molecular complexity) litter inputs and/or complex “humic”
macromolecules formed via condensation reactions, which were persistent because of their resistance to microbial
decomposition (Allison, 2006; Tan, 2003). However, pioneering research in the late 1900s and early 2000s
questioned these ideas (e.g., Elliott & Coleman, 1988; Elliot et al., 1980; Hassink et al., 1993; Tisdall &
Oades, 1982). These humic substances, thought to be large, difficult‐to‐characterize compounds, were present in
mixtures of recognizable plant and microbial compounds (e.g., carbohydrates, lipids, proteins, lignin; Bur-
don, 2001). Support was also slowly developing for the idea that microbes can decompose humic substances,
suggesting inherent chemical structure was not preventing microbial decomposition of SOM (Ekschmitt
et al., 2005). Additionally, evidence mounted that the soil matrix (e.g., mineral surfaces) protects from decom-
position a diversity of molecules, many of which are small and microbial‐derived (Baldock & Skjemstad, 2000;
Gleixner et al., 1999, 2002; Oades, 1988; Sollins et al., 1996). Thus, multiple lines of evidence showed that SOM
largely consists of recognizable plant and microbial compounds persisting in a complex three‐dimensional
mineral matrix in mineral soils.

A key methodological breakthrough that facilitated the overturning of the chemical recalcitrance paradigm was
the use of soil fractionation methods. Physical separations, or fractionations, are commonly used to characterize
SOM and investigate SOM's mineral‐associated and particulate fractions (e.g., MAOM and POM; Cambardella &
Elliot, 1992; Christensen, 2001; von Lutzow et al., 2007, 2008). Physical fractions that are small (<50–63 μm) or
dense (>1.6–1.85 g cm− 3) are referred to as MAOM because of the size cutoff and relatively high density
(compared to organic matter) of silt and clay minerals. Mineral‐associated SOM is assumed to have greater
protection from decomposition compared to POM, which is generally separated as the large and light fractions of
SOM (Lavallee et al., 2020). Notably, these operational definitions of MAOM and POM do not provide fully
consistent pools when using size versus density fractionation but the average properties of the operational pools
from size or density fractionation align with our conceptualizations ofMAOM and POM (Poeplau et al., 2018; see
Leuthold et al., 2022 for detailed review). These primary physical fractions of MAOM and POM can then
experience further physical protection within aggregates (e.g., secondary physical fractions; sensu Chris-
tensen, 2001). Chemically characterizing these physical fractions was an important turning point in how we
thought about SOM dynamics (Baldock & Skjemstad, 2000). For example, updated chemical characterization
showed ample small microbial‐derived amino acids and sugars, lipids, and proteins in MAOM, suggesting that
SOM persistence was not dependent on the presence of hard‐to‐decompose, recalcitrant compounds (Grandy
et al., 2007; Guggenberger et al., 1995; Kiem & Kogel‐Knaber, 2003; Kleber et al., 2011; Kleber, 2010; Six
et al., 2006).

These new insights began to collate into conceptual frameworks that updated our understanding of SOM from
which we derive six main SOM controls (Figure 1; Table 1). We emphasize that while the work highlighted here
has been influential in the field of SOM research, each framework relies on many other studies and ideas and was
selected by the authors based on citations and perceived influence on the field. The frameworks are highlighted
here chronologically and include six main categories of SOM controls (bolded words) that emerged as foci of
SOM research over the past two decades:

• Six et al. (2002) elucidated the mechanisms of SOM persistence as physical inaccessibility through SOM
occlusion in microaggregates and organo‐mineral and ‐metal stabilization via chemical binding of SOM to
silt and clay minerals, proposing the saturation of mineral stabilization. They also conceptualized the POM as
an unprotected pool composed dominantly of plant and also microbial residues.

• Rasse et al. (2005) emphasized the importance of root over shoot inputs for SOM formation. They estimated a
longer residence time for root versus shoot C in SOM and hypothesized multiple pathways of SOM formation
and stabilization depending on the biodegradability of plant (specifically root) inputs. They hypothesized
that structural root litter likely contributed to POM pools, whereas rhizodeposition likely contributed to
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physico‐chemically protected pools in aggregates and via mineral adsorption, suggesting these pathways were
enhanced for roots compared to shoots.

• Davidson and Janssens (2006) suggested that inherent temperature sensitivity of compounds was not sufficient
for understanding temperature sensitivity of SOM. Rather, substrate availability, as dependent on mineral
protection and water content, was a key consideration for temperature sensitivity, shaping our understanding
of abiotic environmental factors as controls on SOM.

• Kleber et al. (2007) suggested the zonal model of mineral‐organic associations, which formalized under-
standing that microbial materials were found in physically protected SOM into the idea that organic

Figure 1. Timeline of conceptual frameworks and the soil organic matter controls derived from them. The arrows get wider as the ideas are incorporated into more
frameworks. Note that the colors used here match those in Figures 2 and 3.

Table 1
Soil Organic Matter (SOM) Controls and Their Definitions as Used in This Paper and as Derived From the Focal Conceptual Frameworks

SOM control Description of control based on frameworks Focal conceptual framework(s) that shaped control

Physical
inaccessibility

Disconnection and protection of substrates from microbes
reduces SOM mineralization

Six et al. (2002); Schmidt et al. (2011); Sokol et al. (2019);
Lehmann et al. (2020)

Organo‐mineral and ‐
metal stabilization

Physical and chemical sorption of otherwise easily decomposable
organic molecules to soil minerals and metals, preventing
SOM loss via mineralization and/or leaching.

Six et al. (2002); Kleber et al. (2007); Grandy and Neff (2008);
Cotrufo et al. (2013); Lehmann and Kleber (2015); Jilling
et al. (2018)

Biodegradability of
plant inputs

The physical structure, solubility, and stoichiometry of plant
inputs determine pathways to SOM formation and (de)stabilization

Rasse et al. (2005); Cotrufo et al. (2013); Phillips et al. (2013);
Cotrufo et al. (2015); Dijkstra et al. (2021)

Abiotic
environmental
factors

Climate (temperature and moisture) and chemical variables
(pH and oxygen availability) interact to alter formation,
(de)stabilization, and loss of SOM

Davidson and Janssens (2006); Schmidt et al. (2011)

Biochemical
reactivity and
diversity

Reactive biochemicals (smaller, N‐rich, oxidized) are more effectively
minerally stabilized. Greater molecular diversity reduces biological
mineralization

Kleber et al. (2007); Grandy and Neff (2008); Schmidt et al. (2011);
Lehmann and Kleber (2015); Lehmnn et al. (2020)

Microbial physiology
and morphology

Microbial physiology and morphology (such as CUE, biomass
chemistry, density) influence the formation, stabilization, and loss
of SOM

Cotrufo et al. (2013); Phillips et al. (2013); Liang et al. (2017);
Sokol et al. (2019); See et al. (2022)
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compounds sorbed onto minerals in layers, with N‐rich andmicrobially derived biochemicals forming an inner
layer and exchangeable SOM forming the outer layer. This framework suggested specific stabilization pro-
cesses depend on mineral composition and compound chemistry, highlighting biochemical reactivity and
diversity and organo‐mineral and ‐metal stabilization as controls of SOM persistence.

• Grandy and Neff (2008) extended the ideas of Kleber et al. (2007) beyond the physically protected pool and
posited a consistent decomposition sequence of SOM, where more plant‐like material dominant in larger
physical fractions of SOM (sand‐sized) was processed by microbes and microbial materials were enriched in
small size fractions (silt‐ and clay‐sized). Notably, this framework suggested less complex microbial com-
pounds were more likely to be protected from decomposition than more complex plant materials, in opposition
to the theory of chemical recalcitrance as a persistence mechanism. This framework also emphasized
biochemical reactivity and diversity and organo‐mineral and ‐metal stabilization as important controls of
SOM formation and loss.

• Schmidt et al. (2011) synthesized how SOM emerges from biotic and abiotic influences in the ecosystem (i.e.,
it is an ecosystem property) rather than from inherent biochemical recalcitrance, collating the frameworks
preceding it. They specifically emphasized the importance of physical inaccessibility (via physical discon-
nection and in deep soils), abiotic environmental factors (due to water availability, temperature, and soil
acidity and redox), and biochemical reactivity and diversity (in terms of the contribution of microbial
products to SOM) as SOM controls. They also summarized the importance of biodegradability of plant
inputs and organo‐mineral and ‐metal stabilization described in Rasse et al. (2005) and Six et al. (2002),
Kleber et al. (2007), and Grandy and Neff (2008), respectively.

• The Microbial Efficiency Matrix Stabilization (MEMS; Cotrufo et al., 2013) framework bridged litter
decomposition and SOM formation, suggesting that stable SOM emerged from sorption of SOM efficiently
processed by microbes originating from high quality (low C:N and low lignin) plant inputs. This work
concurred with Grandy and Neff (2008) and Schmidt et al. (2011) that microbial materials are present in SOM
that persists through organo‐mineral and ‐metal stabilization and therefore on the importance of the
inherent soil matrix capacity to form stable (mineral or metal‐associated) SOM, but also emphasized
importance of the biodegradability of plant inputs andmicrobial physiology andmorphology (specifically
carbon use efficiency [CUE]).

• The mycorrhizal‐associated nutrient economy (MANE; Phillips et al., 2013) framework posited that forests
dominantly associated with arbuscular (AM) or ecto‐mycorrhizal (ECM) fungi have different biogeochemical
syndromes. They suggest that characteristics of AM versus ECM‐dominated systems can alter SOM dy-
namics, for example, through higher litter quality of AM‐compared to ECM‐associated trees and the ability of
some ECM fungi to breakdown SOM to access N and P whereas AM fungi can only access inorganic nutrients.
Similar to Cotrufo et al. (2013), this work suggests biodegradability of plant inputs and microbial phys-
iology and morphology as SOM controls, but as mediated by mycorrhizal type.

• The Soil ContinuumModel (Lehmann & Kleber, 2015) also strongly contrasted with historical understanding
(where compound size increased with humification or condensation) to provide a framework where compound
size is dominantly reduced with microbial decomposition, and as SOM is more oxidized, it interacts more
strongly with aggregates and mineral surfaces and persists through mineral protection. This work contrasted
with Grandy and Neff (2008) in that it focused on molecular size rather than origin (e.g., plant or microbial)
and provided another framework for combining the ideas of biochemical reactivity and diversity with
organo‐mineral and ‐metal stabilization.

• The importance of the physical nature (i.e., structural vs. water soluble) and biodegradability of plant inputs
to soil was formalized into a conceptual model in Cotrufo et al. (2015). This work suggested there are distinct
pathways for the formation of POM and MAOM, where POM forms from physical transfer of structural
residues, whereas MAOM forms from dissolved OM (DOM) inputs to soil and their microbial processing.
This two‐pathway model classified ideas from Rasse et al. (2005) into two pathways, adding aboveground
plant material, and contrasted with ideas from Grandy and Neff (2008) and Lehmann and Kleber (2015) which
emphasize a more continuous decomposition pathway.

• Liang et al. (2017) built upon the importance of microbial physiology and morphology from Cotrufo
et al. (2013) to suggest that the composition of the stable SOM was controlled by two input pathways:
extracellular enzyme depolymerization of biochemically larger compounds that produces biochemically
modified compounds (the ex vivo pathway) and microbial anabolism of DOM that produces microbial nec-
romass (the in vivo pathway).
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• Jilling et al. (2018) focused on the dynamic nature of SOM organo‐mineral and ‐metal stabilization,
describing biological (e.g., plant and microbial) mechanisms of destabilization. This work contextualized
pathways of destabilization mentioned in other frameworks (e.g., Lehmann & Kleber, 2015; Schmidt
et al., 2011), emphasizing that theMAOM pool could be disrupted by plant and microbial processes, creating a
source of bioavailable N.

• Sokol et al. (2019) extended ideas from Liang et al. (2017) by suggesting that direct sorption of DOM to form
MAOM is more efficient in the microbe‐poor bulk soil where minerals are largely not colonized by microbes,
whereas the in vivo pathway of MAOM formation is more efficient in the microbe‐rich rhizosphere. This work
also extended hypotheses laid out in Rasse et al. (2005) regarding the mechanisms by which root inputs are

Figure 2. Aconsolidation of frameworks of soil organicmatter (SOM)dynamics from the last twodecades, that combines ideas
from previous conceptual frameworks largely using the structure proposed in Lehmann and Kleber (2015) and updated in
Basile‐Doelsch et al. (2020) to distinguish the plant inputs into structural and soluble components (Cotrufo et al., 2015). As
microbes are the main transformers of SOM, their influence is central and denoted with the blue “vortex” or swirl. Microbial
processing is dependent on the biodegradability of plant inputs and microbial physiology and morphology (described in
Sections 3.3 and 3.6). Structural plant inputs (green box and arrows) are fragmented into large biopolymers by fauna. Labile
plant inputs (teal box and arrows) directly enter the monomer pool or undergomicrobial processing and are output as different
SOM types (yellow bars) which can re‐enter the “vortex.” The types of SOM differently interact with the soil matrix (gray‐
black bars) to experience organo‐mineral and ‐metal stabilization. Microbial processing and stabilization are constrained by
physical inaccessibility and environmental limitations (dotted lines) reducing the importance of microbial transformation and
organo‐mineral and ‐metal stabilization mechanisms. As in Lehmann and Kleber (2015) and Basile‐Doelsch et al. (2020), we
maintain solid arrows as biotic processes and dotted arrows as abiotic processes. The relative importance of these processes
shifts with depth (Heckman, Hicks Pries, et al., 2022). Here, we focus our attention on reviewing processes in near surface
soils, with the weights of the arrows representing the expected importance of the processes. Representation of the SOM
controls (Table 1) derived from focal conceptual frameworks are denoted with orange circles.
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stabilized in SOM. This work combined ideas of physical inaccessibility (Schmidt et al., 2011) andmicrobial
physiology and morphology (Cotrufo et al., 2013; Liang et al., 2017) with a focus on organo‐mineral and ‐
metal stabilization in the rhizosphere versus bulk soils.

• Lehmann et al. (2020) expanded on the importance of biochemical reactivity and diversity and physical
inaccessibility, suggesting that diversity of SOM compounds and spatial heterogeneity of soil confer SOM
persistence. This work aligned with ideas of microbial processing altering biochemistry (Grandy &
Neff, 2008) and physical separation of microbe and substrate as a SOM persistence mechanism (Schmidt
et al., 2011).

• The Rhizo‐Engine framework (Dijkstra et al., 2021) suggests the stabilization or destabilization of root inputs
in the soil are dependent on microbial turnover and the physicochemical matrix, largely aligning with the
description of destabilization in Jilling et al. (2018). This work focuses on the biodegradability of plant
inputs from roots, with microbial physiology and morphology and organo‐mineral and ‐metal stabili-
zation determining their stability in the soil.

• See et al. (2022) contrasted with Sokol et al. (2019) in that they suggested that fungal hyphae can move SOM
from the rhizosphere throughout the bulk soil such that hyphal density is an important control on SOM for-
mation, extending our understanding of microbial physiology and morphology.

From these frameworks we distill six primary controls for SOM dynamics: physical inaccessibility, organo‐
mineral and ‐metal stabilization, biodegradability of plant inputs, abiotic environmental factors, biochemical
reactivity and diversity, and microbial physiology and morphology (Table 1). We combine these ideas into a
consolidated framework summary (Figure 2) that is inspired by the Soil Continuum Model in Lehmann and
Kleber (2015) that was updated by Basile‐Doelsch et al. (2020) to include the biodegradability of plant inputs
(Cotrufo et al., 2013, 2015) and updated in this paper to include abiotic environmental factors and physical
inaccessibility (Lehmann et al., 2020; Schmidt et al., 2011; Six et al., 2002; Sokol et al., 2019). The consolidated
framework summary highlights non‐linear connections and microbial transformations as major processes of SOM
dynamics in mineral soils. Microbial transformations, dependent on microbial physiology and morphology and
the biodegradability of plant inputs, change the biochemical reactivity and diversity of SOM compounds which
determines their potential for stabilization via mineral‐organic associations or aggregation. However, microbial
transformations are mitigated by physical inaccessibility and environmental factors, which can reduce the in-
fluence of microbial processing on SOM persistence.

Together these frameworks from the last two decades, and the previous research supporting them, are driving an
evolution in our understanding of SOM. However, we note that these focal frameworks are limited in scope given
our focus on the past two decades and the frameworks chosen, and thus we do not exhaustively address all
possible SOM controls, such as photodegradation (King et al., 2012), for example. Nevertheless, we contend that
the above conceptual frameworks and the SOM controls derived from them (Table 1) are fundamental to our
current understanding of SOM dynamics. For that reason, we evaluate the empirical evidence for and model
representation of these SOM controls to assess the validity of the conceptual framework hypotheses, the extent to
which our current understanding is implemented in process‐based models, and where more work is needed to
improve our fundamental understanding of SOM dynamics.

3. Empirical Contributions to and Support for SOM Controls
Here, we review the empirical findings that contributed to the formulation of the SOM controls (Table 1) and
evaluate the empirical support following the formulation of those ideas. We emphasize that this is not a systematic
review and relies on the authors' opinions. While we describe the influence of plant biodegradability on SOM
formation and (de)stabilization, we do not evaluate the influence of the SOM controls on associated changes in
plant processes that can also alter SOM dynamics (e.g., warming‐induced changes in plant input associated with
longer growing season lengths; Luo, 2007).

3.1. Physical Inaccessibility

Physical inaccessibility, as a SOM control, is defined as two processes—physical protection and physical
disconnection ‐ that separate microbes from their substrates, conferring stabilization and reducing loss. Occlusion
of SOM in aggregates physically protects it from microbial mineralization. Aggregates, specifically micro-
aggregates, were highlighted as a stabilization mechanism in the conceptual framework by Six et al. (2002).
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Tisdall and Oades (1982) provided the foundation for the hierarchy of aggregates and their differing controls,
suggesting macroaggregates andmicroaggregates, which can exist within macroaggregates, were held together by
temporary (e.g., roots and fungal hyphae) and persistent (e.g., polysaccharides, metal cations, and mineral‐
organic associations) binding agents, respectively. Stabilization within microaggregates was strongly informed
by Six et al. (2000), who put forth a conceptual model of aggregate dynamics with empirical support. This model
suggested disruption of macroaggregates reduced the formation of microaggregates and that microaggregates
provided greater protection to SOM than macroaggregates. Physical protection in (micro)aggregates was further
supported by findings that aggregation has a positive influence on SOM accumulation and microaggregates
(either free or within macroaggregates) exert stronger stabilization than macroaggregates (e.g., Besnard
et al., 1996; Cambardella & Elliott, 1993; Denef et al., 2001; Elliot, 1986; Golchin et al., 1994; Jastrow, 1996;
further references in Six et al., 2002).

Microaggregates already garnered strong support as a method of physical protection of SOM before Six
et al. (2002) and work following further contextualized this finding (reviewed in Totsche et al., 2018). Multiple
processes of microaggregate formation have been suggested in contrast to the more classical idea of the sur-
rounding of organic debris by mineral particles (e.g.,Tisdall & Oades, 1982). Lehmann et al. (2007) posited that
microaggregates are initially formed by SOM sorption to mineral surfaces that are then further encrusted by
minerals and Asano andWagai (2014) suggested organic‐metal‐mineral mixtures as fundamental building blocks
of microaggregates. While all of these processes likely operate, it remains unclear which is dominant; in general,
there is still much to understand about microaggregate biogeochemistry, stability, and temporal variability
(Totsche et al., 2018). However, accumulation of SOM in microaggregates seems to be mediated by the quantity
of plant inputs, faunal (especially earthworm) activity, and disturbance, which may mitigate the influence of plant
inputs (Alvaro‐Fuentes et al., 2009; Kong et al., 2005; Pulleman, 2004). Work focused on aggregates more
broadly, rather than microaggregates, indicated the importance of fungi and their hyphae for formation of
macroaggregates (Six et al., 2006; Witzgall et al., 2021) and confirmed these aggregates were more vulnerable to
disturbance and turned over more quickly than microaggregates (Alvaro‐Fuentes et al., 2009; Peng et al., 2017).
Additionally, a number of studies indicate the importance of aggregates for protection of otherwise bioavailable
SOM (Angst et al., 2017; Mueller et al., 2012, 2014). However, the in situ dynamics of aggregates embedded in
the soil are less certain (Garland et al., 2023). Overall, the physical protection that aggregates provide clearly
reduces SOM loss, but the mechanistic details of aggregate, and particularly microaggregate, formation, stability,
and in situ dynamics are not yet fully clear.

Physical disconnection is informed by three conceptual frameworks that describe areas of the soil where microbes
are expected to be relatively more physically disconnected from the substrates they use as energetic and anabolic
resources. These include deep soils relative to surface soils (Schmidt et al., 2011) and bulk soils relative to
rhizosphere soils (Sokol et al., 2019). Both deep and bulk soils are areas where microbes and SOMwill experience
more spatial separation, rather than co‐location, due to spatially heterogeneous nature of soils (Lehmann
et al., 2020). Multiple reviews pointed to physical separation between microbes and substrates as a potential SOM
protection mechanism, particularly in the deep soil (Ekschmitt et al., 2008; Rumpel & Kogel‐Knaber, 2011), and
also noted that microbes are largely sessile and so co‐location of microbes and their substrates could only occur
through diffusion or mass flow of DOM (Or et al., 2007). Additionally, observations of lower microbial colo-
nization simply leading to greater distances to substrate on average further supported this idea (Prashar
et al., 2014; Rawlins et al., 2016; Young & Crawford, 2004). Multiple studies also identified greater or different
resource (C, N, or P) or temperature limitation in deep or bulk soils (Chabbi et al., 2009; Chakrawal et al., 2020;
Fierer et al., 2003; Fontaine et al., 2007; Rovira & Greacen, 1957), suggesting that in these microbially sparse
areas of the soil SOM persists via reduced microbial substrate availability. As such, physical disconnection is also
associated with the idea of microbial density as a microbial property influencing SOM formation, stabilization,
and loss (see Section 3.6; Sokol et al., 2019).

Further theoretical and empirical work on physical disconnection additionally supported greater distances be-
tween microbes and their substrates and lower and more resource limited microbial activity in deep, heteroge-
neous, and bulk soils relative to surface, homogeneous, and rhizosphere soils (Gleixner, 2013; Heitkötter &
Marschner, 2018; Henneron et al., 2022; Li et al., 2022; Raynaud & Nunan, 2014; Shi et al., 2021). However,
Inagaki et al. (2023) found greater mineralization when substrate was added as a hotspot (more heterogeneous)
rather than in a distributed manner (more homogenous). Given the limited number of studies on soil heterogeneity
as an aspect of physical disconnection, this adds uncertainty to this aspect and also highlights the difficulty of
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determining an in situ method to compare the influence of spatial heterogeneity on co‐location and spatial
separation of microbes and their substrates. Thus, while there is continued support for physical disconnection
reducing SOM loss, the extent of physical disconnection in certain parts of the soil (e.g., heterogenous parts) and
the persistence associated with physical disconnection remains uncertain.

3.2. Organo‐Mineral and ‐Metal Stabilization

Organo‐mineral and ‐metal stabilization, defined as the physical and chemical sorption of otherwise easily
decomposable organic molecules to soil minerals and metals, mitigates SOM loss until desorption. The idea that
clay minerals stabilize SOM has been around for decades (Allison et al., 1949). The driving support for organo‐
mineral and ‐metal stabilization as a SOM control can be summarized in three ideas: (a) greater presence of clay
minerals, cations, and metal oxides increase SOM, (b) MAOM is older and has a longer turnover time than other
SOM, and (c) MAOM dominantly consists of labile, easily decomposed organic compounds. First, the rela-
tionship between SOM and mineral content appears in studies of field soils, where increased mineral or metal
oxide presence or cation availability correlates to greater amounts of SOM (Hassink, 1997; Hobbie et al., 2007;
Kawahigashi et al., 2006; Kiem & Kögel‐Knabner, 2003; Six et al., 2002). Laboratory studies corroborate this
relationship, as experiments have shown that soils with higher clay content retain more C over long‐term in-
cubations (Sorensen, 1981). Second, radiocarbon dating of SOM fractions showed increased age of C in mineral‐
associated and aggregate‐protected forms of SOM (Kögel‐Knabner & Rumpel, 2018; Marschner et al., 2008;
Theng et al., 1992) as well as slower turnover times (Balesdent, 1987). Finally, mineral fractions often consist of
labile microbially‐derived SOM, which further suggests that minerals protect this otherwise easily decomposable
SOM from decomposition (Grandy &Neff, 2008; Poirier et al., 2005), although minerals and metals also stabilize
less decomposable SOM, particularly through co‐precipitation reactions (Kleber et al., 2015). In addition to these
supporting arguments for mineral stabilization, there is also the idea that this stabilization is limited, termed C
saturation, although this has been suggested to occur for organic and mineral N as well (Castellano et al., 2012;
Six et al., 2002). The C saturation concept was supported by (a) the understanding that the protection mechanism
of minerals is ultimately limited by its surface area and (b) the lack of increase of soil C content with doubling or
tripling of plant inputs in high C soils (Campbell et al., 1991; Hassink, 1997; Kemper & Koch, 1966; Paustian
et al., 1997; Solberg et al., 1997; Stewart et al., 2007).

While organo‐mineral and ‐metal stabilization has been supported in many threads of evidence, it requires a
nuanced understanding, as various factors may influence the strength of mineral associations in protecting SOM.
Because SOM binds to mineral surfaces through diverse mechanisms (von Lützow et al., 2006), the strength of
mineral protection depends on properties of the organic compound (e.g., type, abundance, and charge charac-
teristics of surface functional groups) and the mineral particle (e.g., size, shape, and surface topography; Kleber
et al., 2015). Sorptive fractionation, the idea that certain organic compounds may preferentially sorb to mineral
surfaces, is an example of these complex mineral processes (Aufdenkampe et al., 2001; Guo & Chorover, 2003;
Oren & Chefetz, 2012). Various minerals affect the strength of stabilization differently, which pH also influences
(Keiluweit et al., 2015; Parfitt et al., 1997; Rasmussen et al., 2018). Additionally, minerals can contribute to more
complex functions beyond sorption, including catalysis (Kleber et al., 2021). Work following the publication of
the conceptual frameworks supporting this SOM control has re‐emphasized the importance of cation and metal
availability, or combinations thereof, in organo‐mineral and ‐metal stabilization (King et al., 2023; Rasmussen
et al., 2018; Wagai et al., 2020). This reflects a broader trend in C stabilization literature over the past 20 years to
focus on the reactivity of minerals and metal oxides in addition to soil texture (Hall & Silver, 2015; King
et al., 2023; Kleber et al., 2005; Rasmussen et al., 2018; Tipping, 2002; von Lützow et al., 2006; Wagai
et al., 2020). Despite general support of minerals as stabilizing forces, there are still uncertainties regarding the
effective capacity of minerals to stabilize MAOM under different environmental conditions (Begill et al., 2023;
Georgiou et al., 2022; Stewart et al., 2008), the spatial arrangement of MAOM on mineral surfaces (Possinger
et al., 2020; Schweizer, 2022), and the temporal dynamics and methodological limitations of these associations
(Cotrufo et al., 2023; Poeplau et al., 2023). These uncertainties present good opportunities for further study.

Unlike the other conceptual frameworks reviewed in this paper, which present organo‐mineral and ‐metal sta-
bilization as a largely passive control of SOM persistence, Jilling et al. (2018) argues that MAOM is an actively
cycling SOM pool as well as an important source of nutrients for plants and microbes. The idea that SOM may
actively exchange between dissolved and mineral‐associated forms is not new (Hedges & Keil, 1999; Sanderman
et al., 2008), and MAOM has been conceptualized as consisting of a stable and exchangeable fraction (Kleber
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et al., 2007). Jilling et al. (2018) present priming, plant exudation, and associated changes in soil pH as potential
paths to mineral destabilization, as supported by previous work. In terms of priming, plants may stimulate mi-
crobial activity by exuding labile compounds, such as simple sugars (Kuzyakov, 2010), which can spur N or P
mining of the MAOM pool and destabilize C in the process (Rousk et al., 2016; Sharma et al., 2013; Villarino
et al., 2023). Plants also release organic acids that abiotically mobilize MAOM and compete for mineral binding
sites on the mineral surface (Jilling et al., 2018; Keiluweit et al., 2015). Organic acids may modify soil pH, which
can stimulate both sorption and desorption of MAOM, via changes in mineral surface charge characteristics and
mineral dissolution, respectively (Avena & Koopal, 1998; Rashad et al., 2010; Singh et al., 2016).

Plant‐ and microbial‐induced MAOM destabilization has some empirical support, but studies are still limited.
Addition of root exudate proxies (e.g., organic acids and carbohydrates) increased MAOM‐C mineralization and
ammonification, total soil N mineralization, and DOM, depending on root exudate and mineral type, potentially
via desorption of N‐rich MAOM (Jilling et al., 2021; Li et al., 2021; Liu et al., 2022). An organic acid, oxalic acid,
was shown to increase both metals and dissolved organic N in a sterile soil that consisted of MAOM and sand,
suggesting it was causing direct destabilization of SOM previously sorbed to minerals (Jilling et al., 2021). This
was supported by another incubation study which found higher root exudate‐induced priming of C and N and
larger decreases in iron‐bound SOM in a high iron soil compared to a low iron soil, suggesting abiotic desorption
(Jiang et al., 2021). Despite the support in incubation studies, we know of no study that has studied plant‐ and
microbial‐induced MAOM destabilization in the field; identifying the extent to which this occurs in situ and its
controls are important next steps for this SOM control.

3.3. Biodegradability of Plant Inputs

The biodegradability of plant inputs, defined as their physical structure, solubility, and stoichiometry, is another
important control on SOM formation and (de)stabilization. Here, we first address SOM formation and stabili-
zation, followed by destabilization, and use the word “litter” to encompass both aboveground and belowground
litter. Importantly, this section focuses largely on plant quality but the dominant control of substrate availability
for SOM formation is likely plant quantity (Hansen et al., 2024). However, we focus on plant quality in this
review because it was the novel focus of the past two decades, whereas the quantity of plant inputs has long been
known as a control on SOM (Post et al., 1996). Historically, recalcitrant litter was thought to be the most
important contributor to stable SOM, as it was the slowest to decompose, a concept known as selective preser-
vation (Lehmann & Kleber, 2015). However, reviews, biochemical analyses, and isotope tracer studies revealed
that slow decomposition did not translate to greater SOM stabilization. Rather, fast‐decomposing soluble com-
pounds, especially rhizodeposits and low C:N material, contributed more to minerally‐stabilized SOM (e.g.,
MAOM) while structural materials contributed more to non‐stable pools, that turned over faster on average (e.g.,
POM; Bird et al., 2008;Hatton et al., 2015; Marschner et al., 2008; Preston et al., 2009; Prescott, 2010; Voroney
et al., 1989), as articulated in the conceptual frameworks associated with this control (Cotrufo et al., 2013, 2015;
Dijkstra et al., 2021; Rasse et al., 2005). These findings prompted the delineation of multiple pathways of for-
mation and stabilization of soluble, low C:N, and AM‐associated plant inputs including through microbial
anabolism, direct sorption, and exo‐enzymatic processing of litter residues; these were thought to depend on plant
input source and chemistry (Cotrufo et al., 2013, 2015; Liang et al., 2017; Phillips et al., 2013; Rasse et al., 2005;
Sokol & Bradford, 2019; Sokol et al., 2019). In particular, the microbial anabolism pathway for soluble inputs
relied on findings that low C:N litters were used more efficiently by microbes and that microbial materials were
preferentially stabilized in MAOM compared to plant‐associated compounds (Clemente et al., 2011; Grandy &
Neff, 2008; Manzoni et al., 2008). For POM, the physical transfer of structural material was most clearly arti-
culated as a formation pathway (Cotrufo et al., 2015). Although root inputs were included in these conceptual-
izations of the biodegradability of plant inputs, with rhizodeposition expected to contribute to stable MAOM and
turnover of structural root litter contributing to POM (Rasse et al., 2005), they were historically less studied than
aboveground inputs. However, over the past two decades the importance of root inputs has been reemphasized, as
they are generally more efficiently and effectively stabilized than aboveground inputs (Jackson et al., 2017; Rasse
et al., 2005; Villarino et al., 2021 but see Lajtha et al., 2018).

Support for the influence of the biodegradability of plant inputs on SOM formation and stabilization can be
derived from studies following the pathways of litter to SOM formation via examination of individual com-
pounds, isotopically labeled litter, or litters of varying chemistries. These studies supported formation of MAOM
from soluble litter and POM from structural litter (Cordova et al., 2018; Cotrufo et al., 2022; Even &
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Cotrufo, 2024; Fulton‐Smith & Cotrufo, 2019; Haddix et al., 2016, 2020; Hicks Pries et al., 2018; Huys
et al., 2022; Lajtha et al., 2014; Lavallee et al., 2018; Pierson et al., 2021; Villarino et al., 2021). Furthermore, high
quality litters (e.g., low C:N or from AM trees) facilitated MAOM formation, but not necessarily through an
anabolic or efficient microbial pathway, suggesting direct sorption could underlie this connection in some cir-
cumstances (Aponte et al., 2013; Cordova et al., 2018; Cotrufo et al., 2022; Craig et al., 2018, 2022; Cyle
et al., 2016; Tamura & Tharayil, 2014). Inefficient MAOM formation from high quality litters has been suggested
to be related to the C saturation deficit (i.e., how far the MAOM pool is from saturation; Castellano et al., 2015)
but the limited testing of this hypothesis has found mixed results (Li et al., 2022; Rodrigues et al., 2022). Other
studies, in contrast to those above, have found relationships between structural compounds and MAOM (Huys
et al., 2022), and MAOM and POM (Witzgall et al., 2021), as well as no relationship between litter chemistry and
POM and MAOM formation (Schmatz et al., 2017; Tamura et al., 2017). In a notable example of the latter,
Mikutta et al. (2019) found that direct sorption of plant‐derived DOM was the most important contributor to
MAOM, supporting multiple pathways of MAOM formation (as articulated in Sokol et al., 2019). Additionally,
soluble OM inputs were shown to result in POM formation (Cotrufo et al., 2022) supporting the concept of
microbial contribution to the formation of larger SOM components (Lehmann & Kleber, 2015). These findings
suggest the paths of SOM formation and stabilization may be multiple and context dependent.

While the biodegradability of plant inputs can influence formation and stabilization of SOM, root inputs, despite
their recognized importance in SOM formation (Rasse et al., 2005), can also destabilize SOM. Dijkstra
et al. (2021) articulated this recent paradigm on the paradoxical nature of root inputs wherein roots can contribute
directly to SOM stabilization as described above, but also cause destabilization through two pathways: priming of
existing SOM by stimulated rhizosphere microbial activity (Cheng et al., 2014; Huo et al., 2017; Kuzyakov, 2002)
and disruption of organo‐mineral bonds in aggregates by organic acids in root exudates (Clarholm et al., 2015;
Keiluweit et al., 2015). Notably, destabilization does not necessarily mean a net loss of SOM but likely modifies
the nature of SOM if, for example, an organic acid replaces an amino acid on a mineral surface.

Both priming and MAOM destabilization can clearly occur due to different types of root inputs but the extent of
these responses and their importance in SOM turnover remain uncertain. Root input‐induced destabilization was
supported by a 20‐year experiment that excluded live roots and found increased MAOM pools, suggesting
MAOM was destabilized by priming or desorption when live roots were present (Pierson et al., 2021). However,
an analysis of 35 isotopic labeling studies found rhizodeposition increased MAOM pools, suggesting soluble root
inputs likely favor MAOM formation and stabilization in most contexts, while reducing POM pools, likely due to
increased decomposition associated with priming (Villarino et al., 2021). Priming of SOM due to rhizodeposition
is likely a short‐term response, and rarely exceeds new plant input to SOM, but it does affect the net SOM balance,
making it important to better understand in the future (Perveen et al., 2019; Schiedung et al., 2023). Further, it
remains unclear if plant input biodegradability is the key control on the influence of root inputs on formation and
(de)stabilization of SOM; soil properties may play a more important role (Cusack & Turner, 2021). Under-
standing the relative influence of different types of root inputs on formation and stabilization versus destabili-
zation will be important for soil management and predicting SOM responses to global change.

Overall, while it is clear the biodegradability of plant inputs influences SOM formation and stabilization, and
likely to some extent destabilization, the pathway associated with different types of plant inputs is not always
consistent. Ultimately, on ecosystem and broader scales it is highly likely that altered plant input quantity and
quality will influence SOM formation, loss, and (de)stabilization nonlinearly over time, particularly due to the
transient nature of the priming effect (Perveen et al., 2019; Schiedung et al., 2023). Determining the relative
importance of formation pathways or when stabilization versus destabilization might occur remains an important
research gap for understanding the relevance of the biodegradability of plant inputs for SOM formation and loss.

3.4. Abiotic Environmental Factors

Key conceptual frameworks that contributed to our understanding of abiotic environmental factors focus on how
temperature, moisture, pH and oxygen availability interact to alter formation, (de)stabilization, and loss of SOM.
The foundational understanding of abiotic climate and chemical controls on SOM decomposition began several
decades ago through lab and field experiments (Greenwood, 1961; Katterer et al., 1998; Motavalli et al., 1995;
Walse et al., 1998). However, conceptual frameworks of the last 20 years advanced our understanding of specific
environmental controls considered important for SOM dynamics (Davidson & Janssens, 2006; Schmidt
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et al., 2011). As research progressed on SOM protection through aggregation and sorption mechanisms
(Oades, 1988; Six et al., 2002; Sollins et al., 1996), SOM responses to warming were observed to depend more on
substrate availability and microenvironmental conditions, rather than solely the inherent temperature sensitivity
of specific compounds (Eliasson et al., 2005; Kirschbaum, 2004; Knorr et al., 2005 and discussion therein).
Further work identified the importance of temperature, moisture, pH and oxygen availability, that together in-
fluence biological processing of SOM, with greater biological activity expected in warm, wet, neutral, and
oxygen‐rich conditions (Fierer, Strickland, et al., 2009; Sexstone et al., 1985; Miller et al., 2005; von Lutzow &
Kogel‐Knabner, 2009). Together, these control biological access to substrate, metabolic rate and pathways, and
community composition (Cotrufo & Lavallee, 2022; Fierer, Strickland, et al., 2009; Paul, 2016). These insights
provided the understanding that multiple types of environmental controls interact to directly and indirectly in-
fluence biological processing of SOM.

Many studies support the influence of temperature and moisture on biological processing of SOM. Broadly, ex-
pected reductions in microbial activity are most apparent at extreme ends of environmental spectrums (e.g.,
freezing, desiccation, acidic and anaerobic conditions) but are less apparent formoderate changes in environmental
factors. For example, temperature limitation of microbial activity is supported by slowed or halted SOM
decomposition in cold and frozen environments (Shi et al., 2020; Vaughn&Torn, 2019) and hot, dry environments
(Schimel, 2018). However, the complex controls of temperature remain difficult to characterize, even including
seasonal shifts in metabolic pathways (McMahon et al., 2011). In their seminal review, Conant et al. (2011)
evaluated ideas of substrate limitation formalized in Davidson and Janssens (2006) and found strong support of
higher temperature increasing the rates of SOM depolymerization, microbial assimilation and death, and mineral
adsorption and desorption, but uncertainties remained around covalently‐bound and occluded SOM. In particular,
understanding of microbial response to temperature has been analyzed using the Macro‐Molecular Rate Theory
(MMRT) which indicated variability in microbial temperature sensitivity and acclimation (Alster et al., 2020;
Moinet et al., 2020; Shipper et al., 2014). However, temporal dynamics and underlying mechanisms of microbial
respiratory sensitivity to temperature remain uncertain, including specific assumptions of MMRT (Tang &
Riley, 2023). Moisture control was similarly found to be strongest at extremes due to either lack of physical access
to substrate or microbial desiccation in dry situations, or due to saturation creating a deficiency in oxygen, but with
less clear effects at moderate moistures (Gabriel & Kellman, 2014; Sierra et al., 2016; Wang et al., 2016).

While there has been less empirical work on pH and oxygen availability, support remains for them as drivers of
SOM dynamics. Oxygen content shapes microbial communities (DeAngelis et al., 2010) and low oxygen content
limits microbial mineralization of SOM to easily‐decomposable compounds (Keiluweit et al., 2016; Lin
et al., 2021). Regardless of the potential for some decomposition to persist in low oxygen conditions, Keiluweit
et al. (2017) showed that a shift from anaerobic to aerobic conditions can increase SOM decomposition by tenfold,
indicating strong limitation under anaerobic conditions. Similarly, acidity and liming were found to influence
microbial community, physiology, and activity (Husson, 2013; Lauber et al., 2009; Shaaban et al., 2017; Sridhar
et al., 2022). Although research hypothesized distinct responses of SOM fractions to soil acidity induced by N
deposition (Averill &Waring, 2018), there was variable support for this hypothesis, with effects of N addition and
acidity on SOM mineralization sometimes disconnected (Chen et al., 2020; Lu et al., 2022; Xing et al., 2022).
Overall, it is clear that the abiotic environment can strongly limit microbial processing of SOM at extremes that
even can occur under what might be considered “typical conditions” (e.g., anaerobic microsites in upland soils;
Keiluweit et al., 2017). Understanding more subtle shifts in the environment and differentiating between
instantaneous and adaptive responses across individuals, communities, and ecosystems will inform expected
changes to SOM dynamics under global environmental change.

3.5. Biochemical Reactivity and Diversity

Biochemical reactivity and diversity, the ideas that reactive biochemicals (smaller, N‐rich, oxidized) are more
effectively minerally stabilized and that greater molecular diversity reduces biological mineralization, is a
longstanding SOM control. The conceptual frameworks describing this control (e.g., Grandy & Neff, 2008;
Kleber et al., 2007; Lehmann et al., 2020; Lehmann & Kleber, 2015; Schmidt et al., 2011) were derived from
multiple lines of evidence, including the following crucial findings that supported an overturning of humification
as a dominant mechanism of SOM persistence: (a) Biochemical recalcitrance provides only short‐term protection
from decomposition, with the exception of charcoal (Lobe et al., 2002; Schmidt & Kögel‐Knabner, 2002;
Skjemstad et al., 1996); (b) There is scant evidence that humic substances are a distinct type of molecule or exist
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in soils independent of the alkaline extraction methods used to separate them (Staunton & Weissmann, 2001;
Tatzber et al., 2009); (c) Decomposition is inevitable and leads to reduction in molecular size and complexity and
increasing oxidation and thus reactivity with charged particles in soil (Gleixner et al., 2002); (d) Interactions
between organic molecules and charged minerals and metal oxides lead to the more important mechanisms of
SOM persistence (Balesdent, 1996; Six et al., 2002); (e) Interactions between organic molecules and clay min-
erals and iron hydroxides coupled to predictable interactions among molecules contributes to distinct, patchy
zones of SOM accumulation (Arnarson & Keil, 2001; Mayer & Xing, 2001). The implicit counter assumption of
this SOM control is that larger, N‐poor, and reduced compounds (e.g., aromatic compounds like lignin) largely
persist through their inherent biochemical properties (Grandy & Neff, 2008; Six et al., 2002).

While there was considerable support for the above lines of evidence before the formation of these frameworks,
further work has lent more support to the idea that biochemical reactivity and diversity influence the development
of organo‐mineral interactions and SOM persistence (Almeida et al., 2023; Coward et al., 2019; Possinger
et al., 2020). Chemical properties of biomolecules such as their size, oxidation state, N content, degree of aromatic
condensation (i.e., O:C and H:C ratios) and charge characteristics influence the interactions between SOM and
soil particles (Sparks et al., 2024; Zhao et al., 2022). These interactions contribute to SOM persistence by physical
protection, reducing contact between microbes and substrates due to occlusion in small aggregates and pores, and
the formation of distinct, patchy zones of SOM accumulation (Schlüter et al., 2022; Schweizer, 2022).
Biochemical properties contributing to these mechanisms of persistence, including enrichment of O and N and
reductions in molecular size, arise during the microbial decomposition and transformation of plant‐derived
molecules (Sanderman & Grandy, 2020; Whalen et al., 2022). Thus, SOM longevity is enhanced by genera-
tion of small, oxidized, reactive molecules from decomposition of plant inputs that interact with each other and
charged minerals and metal oxides. In addition, there has been confirmation that certain types of less reactive
compounds, specifically charcoal or black or pyrogenic C, persist for decades in soil through their inherent
biochemical properties (Lavallee et al., 2019), but this is not a long‐term persistence mechanism for the majority
of biochemicals (Bol et al., 2009).

Although research has confirmed the importance of biochemical reactivity and diversity in SOM dynamics,
empirical insights also reveal the context dependency of these effects and the limitations to our understanding. For
example, the architecture of SOM on soil minerals, including the spatial organization of clusters of SOM and the
organo‐mineral and organic‐organic structures therein may influence SOM persistence. Kleber et al. (2007) argue
for zonal structures of organo‐mineral interactions that self organize, with a stable inner‐sphere complex of
hydroxyl groups, phosphate groups, and proteins, followed by a hydrophobic lipid bilayer, and a kinetic zone of
freely exchanged SOM. However, recent studies add complexity and some uncertainty to these ideas. For
example, while studies confirm the enrichment of N and oxidized species at the organo‐mineral interface (Mikutta
et al., 2010; Possinger et al., 2020), iron hydroxide surfaces may also interact with and sorb aromatic compounds
(Kramer et al., 2012; Zhao et al., 2016). This highlights the potential for biochemistry to impact sorption
differently depending on mineral surface characteristics. This also raises questions about what drives the low C:N
ratios observed in MAOM. The lower C:N ratio of MAOM has been attributed to microbial decomposition
resulting in litter C loss and production of N‐rich necromass (Tipping et al., 2016). However, recent studies show
that some minerals preferentially bind with N‐enriched SOM (Jilling et al., 2018; Possinger et al., 2020).
Therefore, mineral surface chemistry may also drive the low C:N ratio of MAOM. Additionally, the presumed
dominance of microbial materials in MAOM is also under reconsideration (Angst et al., 2021). For instance,
Whalen et al. (2022) shows that the overlap in the chemical characteristics of molecules derived from plants and
microbes makes it difficult to attribute many compounds to distinct plant or microbial origin. This assertion aligns
with conceptual and quantitative models that provide pathways for both plant and microbial inputs to enter
MAOM pools (Cotrufo et al., 2022; Kyker‐Snowman et al., 2020; Miltner et al., 2012). Thus, while it is clear that
biochemical reactivity and diversity plays a role in determining organo‐mineral and ‐metal stabilization, we are
not yet able to fully characterize how this role is influenced by the specific characteristics of and interactions
among plant inputs, microbial decomposers and mineral surfaces.

3.6. Microbial Physiology and Morphology

Microbial physiology and morphology, in the context of a SOM control, refer to characteristics of microor-
ganisms that influence the formation, (de)stabilization, and loss of SOM. Several frameworks have explored how
microbial physiology and morphology contribute to the formation and persistence of SOM, though most have
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focused on a small set of traits for microbes broadly, rather than specific taxa. The main traits that have been
highlighted in the literature thus far are CUE, mycorrhizal type (e.g., AM vs. ECM fungi), allocation, referring to
biochemical characteristics of microbes based on the types of compounds they produce (e.g., cell walls, proteins),
and microbial, and specifically hyphal, density, where higher CUE and density are hypothesized to be associated
with greater MAOM formation from incorporation of microbial materials (Cotrufo et al., 2013; Phillips
et al., 2013; Liang et al., 2017; Sokol et al., 2019, 2022; See et al., 2022). Liang et al. (2017) also suggest exo‐
enzymatic processing (termed the ex vivo pathway) as a pathway for plant inputs to enter MAOM without mi-
crobial assimilation. This is a novel and intriguing idea, but difficult to test, since relationships between exo‐
enzymatic activity and MAOM (as in Chen et al., 2023; Gao et al., 2024; Mao et al., 2024) could derive from
direct sorption of enzymatically processed materials or their subsequent use by microbes for energy and anab-
olism. Future work that explicitly evaluates the ex vivo pathway would help elucidate its importance. The ideas of
CUE and allocation contributing to SOM formation largely derived from findings of efficient microbial substrate
use and biosynthesis being associated with SOM formation as well as the contribution of microbial materials of
specific biochemistry to stable SOM (Bradford et al., 2013; Kindler et al., 2006; Schweigert et al., 2015). The
expected influence of mycorrhizal type on SOM derived from differences in litter quality associated with ECM‐
versus AM‐associated trees (see Biodegradability of plant inputs section) and from the ability of some ECM fungi
to access organic nutrients and hence decay SOM (Cornelissen et al., 2001; Read & Perez‐Moreno, 2003).
Microbial density, as a trait, derived from studies showing greater microbial abundance in the rhizosphere
compared to the bulk soil coupled to the understanding that microbial colonization is associated with greater
anabolism (Guggenberger & Kaiser, 2003; Prashar et al., 2014; Young & Crawford, 2004). Whereas, the specific
control of hyphal density stemmed from studies showing that (a) a large proportion of plant C allocation is found
outside of the rhizosphere (Huang et al., 2020; Leake et al., 2001; Norton et al., 1990); (b) saprotrophic fungi can
redistribute C from SOM patches to other regions of the soil while searching for nutrients (Frey et al., 2003); and
(c) mycorrhizal hyphae incorporate newly fixed C into SOM (Cairney, 2012; Clemmensen et al., 2013; Ekblad
et al., 2013; Frey, 2019; Godbold et al., 2006; Leake et al., 2004).

While work suggesting the importance of microbial physiology and morphology has received considerable
attention and citations, few direct tests of the proposed mechanisms have been conducted, and available results are
mixed. Positive correlations between CUE and SOM or MAOM content have been observed (Kallenbach
et al., 2015, 2016; Luo et al., 2020; Tao et al., 2023;Wang et al., 2021). Tao et al. (2023) demonstrated thatCUEwas
the most important predictor of SOC in comparison to other biophysical factors using data synthesis and modeling
approaches, though uncertainty remains regarding CUE's treatment more as an ecosystem property rather than a
microbial trait, the choice of model structure, and the predictors included (e.g., plant inputs were omitted as a
predictor; He et al., 2024; Xiao et al., 2023). Ernakovich et al. (2021) similarly found that CUE was related to new
MAOM formation, but the measure of CUE employed in this study reflected both soil and microbial properties. In
contrast, Craig et al. (2022) found that while the decomposition of fast decaying litter promoted SOM formation,
CUE, along with microbial growth and turnover, were negatively correlated with MAOM, suggesting that the
transfer of C to MAOM might instead be due to other pathways and controls (e.g., necromass chemistry, direct
sorption with or without enzymatic processing, priming effects, and abiotic conditions).

Mycorrhizal type has emerged as an important control over SOM dynamics over the past two decades but exact
mechanisms that drive differences in SOM dynamics between AM versus ECM‐dominated systems remain
uncertain (Frey et al., 2019). SOM loss is likely mediated differently by AM and ECM fungi with AM fungi
decaying SOM via rhizosphere priming and ECM fungi via enzymatic decay and fenton chemistry‐induced SOM
oxidation (Beeck et al., 2018; Tisserant et al., 2013; Zak et al., 2019). In contrast, both AM and ECM fungi might
contribute to SOM preservation via competition with saprotrophic microbes (e.g., the Gadgil effect; Gadgil &
Gadgil, 1971, 1975) but we lack unequivocal empirical evidence for this effect (Fernandez & Kennedy, 2016).
Mycorrhizal biomass, necromass, and exudates also likely contribute to SOM formation, and significantly so, but
we still lack quantification of this contribution (Frey et al., 2019).

Support for the importance of microbial density as an influence on SOM dynamics is mixed. The only clear test of
microbial density we are aware of suggested that the higher microbial density of the rhizosphere was associated
with more efficient MAOM formation (Sokol & Bradford, 2019). However other studies find greater microbial
necromass biomarker abundance in the bulk soil than the rhizosphere or associated with living biomass, soil pH,
and DOC rather than belowground biomass, suggesting that microbial density in the rhizosphere does not always
confer MAOM formation via a microbial anabolic pathway (Jia et al., 2023; Yang et al., 2022; Zheng et al., 2021).
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There has been limited testing of the importance of hyphal density as of yet, but current evidence suggests hyphal
density may be particularly important for stable SOM formation in AM and N‐rich systems but may reduce
MAOM formation in ECM systems (Hicks Pries et al., 2023; Horsch et al., 2023; Zhu, Zhang, et al., 2022).
Whalen et al. (2024) comprehensively tested whether a suite of soil fungal traits are linked to SOM formation
potential and found that the formation of stable, chemically diverse SOM fractions was promoted by “multi-
functional” species with intermediate investment across a group of traits (i.e., CUE, growth rate, turnover rate,
and biomass protein and phenol contents), emphasizing the importance of trait synergies. Further work should
build from these findings with single cultures to consider the impact of microbial interactions (viral‐bacterial‐
fungal, bacterial‐bacterial, fungal‐fungal, etc.) on how the expression of multifunctional traits and trait in-
vestments alter SOM dynamics. It is clear that microbial physiology and morphology are important for SOM
formation, but there is still much to learn about which traits or groups of traits are associated with SOM formation
and under which biophysical conditions.

4. Implementation of Framework Ideas in SOM Models
The theoretical frameworks summarized in Figure 2 are partly or fully reflected within numerical models of SOM
turnover and persistence (Blankinship et al., 2018). These models allow us to project the responses of SOM under
global change; but they can also be seen as hypothesis testing tools, because they make explicit assumptions in
their structures and parameterizations that can be informed by and evaluated with conceptual understanding and
observational and experimental data (Sulman et al., 2018). Given limitations in our theoretical understanding and
uncertainties in model parameterizations, numerical models also provide opportunities to explore how these
knowledge and information gaps influence projections of ecosystem response to environmental change
(Abramoff et al., 2022; Pierson et al., 2022; Zhang et al., 2020). We note that recent reviews provide excellent
resources for readers looking for detailed summaries of the diversity of modeling approaches (Chandel
et al., 2023; Le Noë et al., 2023). Our aim in this section is to briefly highlight how different aspects of the
frameworks are implemented into numerical models, given the value of models noted above.

4.1. Model Representation of Physical Inaccessibility

The idea that substrates are physically protected or disconnected from microbial decomposers is variably rep-
resented in soil biogeochemical models. Despite decades of evidence of the importance of aggregates for physical
protection of SOM, explicit consideration of aggregates is represented in only a few models (Abramoff
et al., 2018, 2022; Segoli et al., 2013). Aggregate dynamics therefore represent an important frontier in soil
biogeochemical models. Physical disconnection is better represented in models and is expected to be more
prevalent in deep, bulk, and heterogeneous soils, as compared to surface, rhizosphere, and homogeneous soils
(Lehmann et al., 2020; Schmidt et al., 2011; Sokol et al., 2019). In depth‐resolved soil models, turnover times are
often reduced in deeper soil horizons to implicitly represent the physical disconnection between substrates and
decomposers and consequent energy limitations that slow decomposition processes (Koven et al., 2013). How-
ever, not all depth‐resolved models impose reductions in turnover times with depth, but rather, some allow the
underlying mechanisms to drive differences in SOM persistence with depth (Ahrens et al., 2020; Druhan &
Lawrence, 2021; Dwivedi et al., 2017; Zhang et al., 2021). For instance, Ahrens et al. (2015) found that even
without imposing longer C turnover times in deeper soils, older 14C ages emerged from the interplay of mineral
stabilization and microbial recycling in their model and that vertical transport by DOC prevented SOM from
being too old compared to site‐level observations. Ultimately, only a small subset of ecosystem‐ or global‐scale
soil models are fully depth‐resolved (Ahrens et al., 2015; Grant et al., 2014; Koven et al., 2013; Zhang
et al., 2021), while many others represent at most topsoil (0–30 cm) and subsoil (30–100 cm) intervals (Sulman
et al., 2018; Wieder et al., 2013).

Besides depth, the physical disconnection of microbes and substrates can occur with the heterogeneous distri-
bution of SOM in bulk soils or because of gradients in plant inputs in soil affected by rhizosphere processes. For
example, the spatially heterogeneous distribution of SOM can cause different respiration rates compared to a
model configured with homogenous SOM distribution (Chakrawal et al., 2020), suggesting larger scale models
may need effective equations and/or parameterizations to capture these emergent dynamics. With respect to
representing greater microbe‐substrate co‐location in the rhizosphere compared to the bulk soil, Sulman
et al. (2014) and Zhang et al. (2021) are some of the few models that represent dynamics of rhizosphere and bulk
soil separately. Despite these advances, capturing dynamics of aggregate formation, destruction, and distribution,

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007964

ROCCI ET AL. 15 of 31

 21698961, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007964, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



implementing fully depth‐resolved models, capturing spatial heterogeneity of microbes and substrates in
computationally efficient model formulations, and defining the volume of soil that experiences spatial hetero-
geneity or rhizosphere effects remains challenging to quantify and parameterize in models that are used at
ecosystem‐to global‐scales.

4.2. Model Representation of Organo‐Mineral and ‐Metal Stabilization

Organo‐mineral and ‐metal stabilization has been included as a SOM persistence mechanism in soil biogeo-
chemistry models for decades. This concept is reflected in the parameterization of turnover times for SOM pools
that are considered “passive,” or stable (formulated as, or comparable to, MAOM), especially when the allocation
to or turnover of these pools are modified by soil physical properties like texture (Georgiou et al., 2024; Parton
et al., 1994; Sulman et al., 2018). Soil texture (i.e., clay and silt content) may be a relatively crude proxy for
organo‐mineral and ‐metal stabilization, but it is likely still a useful (and widely measured) integrator variable for
complex SOM interactions with the mineral soil matrix (Bailey et al., 2018; Rasmussen et al., 2018).

Other model parameterizations include variation in organo‐mineral and ‐metal stabilization due to mineral
composition by representing different mineral types or relationships between pH and MAOM (Ahrens
et al., 2020; Abramoff et al., 2022; Grant et al., 2012), as well as modeling separate exchangeable and stable
MAOM pools (Zhang et al., 2021). The period for which C or N remains in a pool formulated as MAOM is
generally dependent on desorption rates, microbial decomposition capacity, and environmental controls, and this
period exceeds that of more POM‐like pools (Sulman et al., 2018). Since these MAOM‐like pools are generally
parameterized with a lower C:N ratio and they protect otherwise decomposable SOM (Rocci et al., 2024), they
largely align with the conceptual frameworks of organo‐mineral and ‐metal stabilization (Kleber et al., 2007;
Lehmann &Kleber, 2015). While models broadly represent exchange of MAOM‐like pools, the destabilization of
mineral‐sorbed SOM by explicit plant and microbial processes—which is relatively new to the SOM paradigm
(Bailey et al., 2019; Jilling et al., 2018; Keiluweit et al., 2015)—is virtually absent from ecosystem‐scale models.
This presents an exciting opportunity for empirical and modeling work to feedback on each other as our un-
derstanding of the dynamic nature of MAOM exchange and destabilization develops.

4.3. Model Representation of Biodegradability of Plant Inputs

Some aspects of the influence of the biodegradability of plant inputs have been fundamentally represented in
models but other aspects of this control are still underrepresented. For example, the importance of litter quality has
long been recognized in determining litter decomposition rates, a pattern that is also well established in models,
often using C:N ratios and/or lignin content as proxies (Adair et al., 2008; Aerts, 1997; Bonan et al., 2013; Parton
et al., 1987). These proxies generally cause separation of litter into metabolic and structural components which are
differently incorporated into distinct SOM pools; some of these model structures are well‐aligned with the
expectation that soluble and structural materials preferentially form MAOM and POM, respectively (Cotrufo
et al., 2015; Parton et al., 1987; Wang et al., 2010; Wieder et al., 2014; Zhang et al., 2021). While the metabolic
and structural components previously mentioned broadly match our current understanding, few models have
represented measurable litter pools which can directly connect models and empirical work (but see Zhang
et al., 2021). As mentioned in the organo‐mineral and ‐metal stabilization section, the influence of different types
of root inputs on mineral destabilization is poorly represented in models. Rhizosphere priming has been inves-
tigated by Sulman et al. (2014) using a process‐based model, but not considering different types of root inputs.
Thus, while some aspects of plant input effects on SOM have a long history of representation in soil biogeo-
chemical models, others deserve more attention in future work.

4.4. Model Representation of Abiotic Environmental Factors

The influence of abiotic environmental factors on microbial activity can be seen in the rate scalars used to modify
the turnover of SOM pools. For both temperature and moisture, these environmental scalars are intended to
represent the kinetics of substrate diffusion and microbial activity on SOM decomposition and rates of hetero-
trophic respiration. The shapes of these functions are highly variable across models and can generate substantial
uncertainty in simulated rates of heterotrophic respiration (Evans et al., 2022; Sierra et al., 2016; Zhou
et al., 2021). For example, while freezing temperature should reduce microbial activity, the limitation of liquid
water may actually limit decomposition rates in some model formulations. Similarly, under saturated conditions,
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oxygen availability may ultimately slow rates of heterotrophic respiration, which can be implicitly represented
with a hump shaped water scalar, or explicitly represented with an oxygen scalar in models that consider porosity
and gas diffusion in soils (Evans et al., 2022; Ghezzehei et al., 2019). Beyond temporally varying temperature,
water, and oxygen availability, static soil physical properties like soil pH or texture may modify rates of SOM
turnover (Abramoff et al., 2022; Rasmussen et al., 2018; Zhang et al., 2021). The extent to which changing
environmental conditions influence the turnover of SOM and rates of heterotrophic soil respiration shows a high
dependency on the model assumptions and parameterizations of these environmental scalars, as well as their
interactions with other mechanisms of persistence in models (Koven et al., 2017; Wieder et al., 2013, 2019).

4.5. Model Representation of Biochemical Reactivity and Diversity

Foundational ideas about SOM biochemistry are broadly implemented in soil biogeochemical models, although
both have evolved over the past several decades. The foundational idea we highlight here, which posits that
smaller, N‐rich and oxidized biochemicals are more effectively minerally stabilized and thereby persistent
(Table 1) have been represented in several models through the parameterization of SOM stoichiometry and fluxes
between pools, such as the low C:N ratio of the passive pool (Parton et al., 1994; Schimel et al., 1994) and the flux
from microbial necromass to more persistent SOM (Abramoff et al., 2018; Ahrens et al., 2020; Sulman
et al., 2014; Wieder et al., 2014; Zhang et al., 2021). The latter models include microbial explicit representations
of decomposition dynamics and generally assume that some fraction of low molecular weight SOM and/or
polymeric microbial residues persist because they are strongly sorbed to minerals. Such formulations vary across
microbial explicit models, where some models form minerally stabilized SOM only from microbial necromass
(Wieder et al., 2014), and others represent both low molecular weight and microbial residue pools that can each
sorb/desorb at different rates (Abramoff et al., 2022; Ahrens et al., 2020; Sulman et al., 2014; Zhang et al., 2021).
Moreover, all of the sorbed compounds may be assigned the same turnover rate (Abramoff et al., 2018; Sulman
et al., 2014), or some models explicitly distinguish microbial necromass turnover and DOM sorption pathways of
mineral stabilization that vary rates of exchange or desorption (Ahrens et al., 2020; Zhang et al., 2021).

Despite these complexities, no ecosystem‐scale models represent the complete SOM functional diversity (e.g.,
sugars, lipids, organic acids, lignin‐derived compounds, and amino acids) due to inherent difficulties in
parameterizing and validating underlying model pools at large scales, although some ecosystem models do
represent select SOM compound classes explicitly (e.g., non‐structural carbohydrates, proteins, lignin, cellu-
lose; Grant et al., 2014). At the site‐level and within strictly theoretical studies, however, reactive‐transport
models have been used to represent an extensive suite of polymeric and monomeric organic compounds,
where compound classes are selected based on properties relevant for metabolic processing (e.g., oxygen to C
ratio, positive or negative charge, and degree of polarity; Riley et al., 2014; Dwivedi et al., 2017). The
PROMISE framework (Waring et al., 2020) and prior work by Sierra et al. (2017) further illustrates that SOM
dynamics are driven by probabilities of interactions at the molecular scale and, therefore, underlying pools can
be heterogeneous in their persistence and depict a distribution of carbon ages (Azizi‐Rad et al., 2021). Ulti-
mately, differences between these model formulations allow the opportunity to probe our scientific under-
standing, but we also highlight the difficulty in parameterizing increasingly complex representations of
biochemistry effects on SOM dynamics.

4.6. Model Representation of Microbial Physiology and Morphology

The expression of microbial physiology and morphology can be simulated in models that implicitly or explicitly
represent heterotrophic microbial activity. For example, CUE is a common, albeit highly uncertain, feature in soil
biogeochemical models (Manzoni et al., 2018). Explicit consideration of microbial‐mediated decomposition rates
or enzyme activity has become more common in recent decades (summarized by Chandel et al., 2023; Le Noë
et al., 2023). These microbially‐explicit models allow for consideration of how microbial physiology and
morphology influence the rate (catabolism) and fate (anabolism) of SOM turnover (Schimel & Schaeffer, 2012).
This growing diversity of model formulations (e.g., Ahrens et al., 2015; Sulman et al., 2014; Tang & Riley, 2015;
Wang et al., 2013; Wieder et al., 2014) provides opportunities to consider how microbial trait‐environment re-
lationships influence SOM turnover and rates of heterotrophic respiration (Abramoff et al., 2018; Frey
et al., 2013; Wieder et al., 2013; Zhang et al., 2021).
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Some of these microbial‐explicit models have been expanded to represent different microbial functional groups
and/or explicit extracellular enzymes (Grant, 2014; Sistla et al., 2014; Wang et al., 2013; Wieder et al., 2014;
Wutzler et al., 2023), affording opportunities to explore how changes in microbial community composition and
community‐weighted mean traits may influence SOM turnover. For instance, several ecosystem‐scale models
represent two or more microbial constituents, including r versus K strategists (Wieder et al., 2015), rhizosphere
versus bulk microbes (Sulman et al., 2014; Zhang et al., 2021), mycorrhizae and non‐symbiotic microbes (Aas
et al., 2023; Baskaran et al., 2017; He et al., 2018), and a suite of 10+ functional groups (Grant et al., 2014). At
smaller (pore to core) scales, individual‐ and trait‐based models are widespread and often depict emergent system
behavior that may not be captured in ecosystem‐scale models (Allison, 2014; Allison & Goulden, 2017; Bouskill
et al., 2012; Kaiser et al., 2015; Marschman et al., 2024). For example, Kaiser et al. (2014) show that microbial
community interactions can lead to community‐level adaptations that accelerate N cycling in high C:N litter and
alleviate N limitation without decreasing CUE. Kaiser et al. (2015) further illustrate the importance of different
microbial groups (e.g., enzyme producers and cheaters) in regulating emergent SOM decay rates and N retention
through an accumulation of N‐rich necromass.

While microbial physiology and morphology are important for influencing the biochemical nature and mineral
stabilization of SOM at smaller spatial and temporal scales, it is still an open question how much complexity is
needed within ecosystem‐to global‐scale models. Omics data may be a useful tool for constraining trait‐based
models at larger scales (Graham & Hofmockel, 2021). However, an increasing number of microbial functional
groups and traits may be difficult to parameterize at larger spatial scales. As such, effective equations and pa-
rameterizations that implicitly incorporate community‐level controls (e.g., Georgiou et al., 2017), may be a
tractable way to add complexity and capture emergent dynamics.

5. Summary and Looking Forward
Overall, the SOM controls, as defined in Table 1, were supported by empirical work (albeit with considerable
context dependency) and represented in models to varying extents, but there remain gaps in our understanding
(Figure 3). For example, more empirical work on physical disconnection in different parts of the soil (e.g., bulk vs.
rhizosphere, surface vs. deep, homogeneous vs. heterogeneous) will be important for determining whether these
differences deserve wider representation in models, whereas wider model representation of the physical pro-
tection provided by aggregates would likely be useful in ensuring process‐based models match our empirical

Figure 3. Empirical support (black semi‐circles) and model representation (white semi‐circles) of the SOM controls (rounded
boxes) identified in Figure 1 based on the review in this paper. A full circle represents the strongest empirical support and
model representation. Colored arrows (pink = regulates; teal = facilitates, orange = limits) show how the SOM controls
relate to one another. Note that the color of each rounded box relates to the color in Figures 1 and 2.
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understanding. Our review highlighted that MAOM has largely been conceptualized as a passive pool, but both
recent empirical work and model representations have supported it as more actively cycling (Ahrens et al., 2020;
Jilling et al., 2021; Zhang et al., 2021). Understanding the extent to which MAOM is active or passive and
whether saturation limits this pool will be important advances. Environmental limitation is perhaps the most
fundamental of the SOM controls but there remains lingering uncertainty around temperature sensitivity of both
microbes and associated SOM pools and acclimation and adaptation, as well as variable representation of tem-
perature and moisture controls in models. Despite its long history in advancing our understanding of SOM
controls, we are still unsure whether biochemical reactivity and diversity causes consistent layering of compounds
and whether this fine‐grained detail is important to incorporate into models. While it is clear the biodegradability
of plant inputs influences SOM formation and stabilization, it is unclear what drives the variable pathways of
MAOM formation (e.g., direct sorption or microbial anabolism); implementing different pathways into models
may allow for efficient testing of relationships between the biodegradability of plant inputs and pathways of
formation and stabilization. Whereas, the influence of biodegradability of plant inputs on destabilization requires
greater investigation in observational, experimental, and modeling studies. The exploration of microbial physi-
ology and morphology in conceptual frameworks and models is largely limited to CUE; recent work highlights
the need to consider a broader suite of microbial physiological and morphological traits as SOM controls (Sokol
et al., 2022;Whalen et al., 2024). Altogether, conceptual frameworks have provided us with important framing for
the past couple decades of SOM research but there are clear gaps that will be important avenues of pursuit for the
next couple of decades.

While we discuss each SOM control in separate sections above, they are inextricably connected and alter each
other's influence on SOM (Figure 3). For example, soil pH (abiotic environmental factor) is associated with
different types of organo‐mineral and ‐metal stabilization (e.g., sorption to metal oxides in acidic soils and cation‐
bridging and sorption to clay minerals in basic soils; Rasmussen et al., 2018). Additionally, pH can directly alter
organo‐mineral and ‐metal stabilization by changing protonation of mineral surfaces and the propensity for ligand
exchange (Kleber et al., 2005; Figure 3). At the same time, soil pH also alters microbial communities (Fierer,
Strickland, et al., 2009), changing the microbial physiology and morphology that can influence SOM formation,
(de)stabilization, and loss (Figure 3). Alterations in microbial physiology and morphology may then generate
different SOM biochemical reactivity and diversity which may ultimately influence the likelihood of organo‐
mineral and ‐metal stabilization of SOM (Figure 3). Process‐based models can also exhibit this interdependency
of SOM controls by generating emerging patterns that result from the mathematical relationships underlying
models. For example, Sulman et al. (2017) find greater MAOM in simulated AM versus ECM‐dominated plots.
They demonstrated this by incorporating SOM controls of biodegradability of plant inputs and microbial physi-
ology and morphology into their model structure which allowed for variation in biochemical reactivity and
consequently organo‐mineral and ‐metal stabilization (Figure 3) ‐ higher litter quality in AM‐dominated plots
promoted microbial biomass production and subsequent biochemically reactive SOM that readily sorbed to
minerals. These are just two examples but starting from any given control in Figure 3 can lead you on a path
connecting many of the controls. The relationships between SOM controls will ultimately determine the dynamics
of SOM and evaluating the relevance and hierarchy of these relationships will continue to be an important focus of
future research.

The collective SOM controls also present some inconsistencies when evaluated together. For example, the
dominance of small and often oxidized molecules in MAOM, and its low C:N ratio (Mooshammer et al., 2022;
Rocci et al., 2024), provide support for the dominance of microbial materials in MAOM (e.g., Cotrufo et al., 2013;
Grandy & Neff, 2008). Yet, other ideas suggest direct pathways for plant materials to become MAOM (Cotrufo
et al., 2022; Liang et al., 2017; Sokol et al., 2019) and the presence of an unstable, N‐rich MAOM fraction
(Dijkstra et al., 2021; Jilling et al., 2018). These inconsistencies can be reconciled with the understanding that our
methods for distinguishing plant and microbial compounds in MAOM are limited (Whalen et al., 2022) and the
rates MAOM formation and destabilization geographically vary with climate, soil, and vegetation (Cordova
et al., 2018; Sokol et al., 2022; Yu et al., 2022). The conceptualization of organo‐mineral and ‐metal stabilization
as a persistence mechanism (Lehmann & Kleber, 2015; Six et al., 2002) can be seen as at odds with MAOM as a
partially exchangeable pool. This can be better understood by comparing conceptualizations of MAOM to how
MAOM is measured; separating a small or dense fraction of SOM may include non‐stabilized material, despite
the assumption of mineral association given the name of the pool. Additionally, the frameworks described above
both suggest largely continuous formation pathways of POM to MAOM (though this framework allows for
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microbial feedbacks; Grandy & Neff, 2008) and two distinct formation pathways of POM and MAOM (Cotrufo
et al., 2015). These can be reconciled by separately considering SOM formation from plant litter and SOM cycling
within the soil. When derived from plant litter, there is strong evidence for POM largely forming from structural
material and MAOM largely forming from soluble material. However, once formed, POM can be a source for
MAOM formation (Witzgall et al., 2021), although how prevalent this is remains uncertain. Determining the
hierarchy or context dependency of these controls moving forward may further help reconcile perceived in-
consistencies in our understanding of SOM dynamics (Cotrufo et al., 2021).

In conclusion, building upon more than a century of soil science, researchers in the past 20 years have provided
important conceptual frameworks regarding controls of SOM formation, (de)stabilization, and loss. These
frameworks have variable empirical support and model representation with particularly important gaps in mi-
crobial physiology and morphology and physical inaccessibility (Figure 3). By focusing on six SOM controls
derived from the focal conceptual frameworks, we were able to identify interactions and inconsistencies between
these controls and important areas for future empirical and modeling work. We are excited to see the forthcoming
conceptual frameworks of the following decades and how they continue to shape the evolution of our under-
standing of SOM dynamics.

Data Availability Statement
There were no data or code used in this manuscript.
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